

Designing Switched-Mode Power Supplies in the High di/dt Era

Application Engineer / Keysight Technologies

Jason CHEN

Trends in Switched-mode Power Supplies (SMPSs)

Customer Demands:

- Smaller size
- Lighter weight

- Higher switching speed (high di/ft)
- New technologies (accurate modeling)

A magical shrinking machine doesn't exist!

Impact:

- Performance
- Reliability
- Development/time to market costs

Challenges in power circuit design

High switching frequency along with high frequency components in waveform causes unexpected EMI

Prototype circuit explosion due to unexpected surge

High switching frequency and associated surge/ringing causes malfunction

Lack of power circuit simulation tool.

Conventional tool may work for low frequency circuit but not for WBG device circuit

High Speed Power Converter Challenge

THINKING IN THE FREQUENCY DOMAIN

High speed power converters have relevant energy in the multi-GHz range!

KEYSIGHT TECHNOLOGIES

Higher Frequency Can Lead to Higher Switching Loss

UNLESS THE EDGE SPEED IS INCREASED AS WELL

Low frequency Slow edges Switching loss 3.5% Higher frequency Same slow edges Switching loss 15.3% Higher frequency Faster edges Switching loss 3.3%

If you want to *reduce* switching loss, you have to improve the edge speed *even more dramatically* than improving the switching frequency

Current Loops: Schematic View

Current Loops: Layout View

When does the layout of the switched loop become important?

$$V_{\text{spike}} = L_{\text{parasitic}} * \text{di/dt}$$

 $V_{\text{spike}} = L_{\text{parasitic}} * I_{\text{on}}/\tau$

$$V_{spike} = L_{parasitic} \frac{I_{on}}{\tau}$$

$$\frac{V_{spike}}{V_{off}} = L_{parasitic} \frac{I_{on}}{\tau V_{off}}$$

$$10\% = L_{10\%} \frac{I_{on}}{\tau V_{off}}$$

$$L_{10\%} = \frac{0.1\tau V_{off}}{I_{on}}$$

Definition of inductance Linear ramp di/dt

Divide both sides by Voff

What inductance will give us a overstress spike that is, say, 10% of Voff?

Rearrange, plug in some numbers 10 ns, 20V, 4A answer is 5 nH Few mm of wire is 5 nH!

Traditional Low Speed Design Approach

PRE-LAYOUT SPICE, THEN "CUT AND TRY"

Pre-layout schematic SPICE simulation:

"Best Case" performance

First prototype has some excess ringing. Cut-and-try until "best case" approached

2-6 spins \$6k-\$60k/spin 3-8 weeks slip/spin

Image courtesy of ST Microelectronics

Traditional Design Approach Applied to High Speed

PRE-LAYOUT SPICE, THEN "CUT AND TRY"

Pre-layout schematic SPICE simulation:

"Best Case" performance

First prototype has destructive failure.

What next?

Kevsiaht World

A suggested Design Approach

IDENTIFY AND FIX PROBLEMS BEFORE FABRICATION

Schematic Only Simulation (Best Case)

KEYSIGHT

Identify & Fix Physical Design Issues with EM

Final EM Verification

13

Conventional simulation vs. New Keysight simulation method

Exact waveform match is critical for noise calculation as waveform contains high frequency components

What are different? (1)

DEVICE MODEL

Added body diode to better fit to SiC

$$\tanh\left(\left(\text{Lambda1} \times \tanh\left(1 + \text{Lambda2} \times V_{gs}\right)\right) \times V_{ds}\right)$$

Added Vgs, Vds dependent parameter to drain current equation to better represent unsaturated drain current

$$Q_{gs}$$
= $(C_{gspi} + C_{gs0} \times \tanh 02)$
+ $(C_{gspi} + (C_{gs0} \times \tanh 01 + C_{gs0i} \times \tanh 1i) \times \tanh 02)$
 $\tanh XX(i) = 1 + \tanh(A + B \times V_{gs} + C \times V_{ds})$

Added tanhXX to express a positive bias dependence on charge equation

- Modified popular Angelov GaN
 - To represent SiC or GaN behavior better
 - Independent of device physics parameters (e.g. Tox) → Everyone (e.g. circuit designer) can use it

Source: "Measurement Methodology for Accurate Modeling of SiC MOSFET Switching Behavior over Wide Voltage and Current Ranges", H. Sakairi, et. al., IEEE Trans on Power Electronics early access,

Keysight World

Power Electronics Model Generator

 Powerful flow dynamically adapts to measured data and provides turns-key automated extraction of Power Electronics models

What are different? (2)

(A) Wide range IV using double pulse test

600

800

IV curve with conventional test equipment doesn't cover switching trajectory

Utilize double pulse test system to obtain wide enough IV curve to cover switching trajectory

Source: Measurement Measurement and a second of the Mark Source and Carlotte and Ca

200

400

Vds (V)

What are different? (3)

(B) Inclusion of CV (both off-state & on-state)

Discontinuous measurement points seen beyond 10MHz are considered to be caused by oscillation due to parasitic and stray inductance associated with measurement circuit. Therefore, simulation didn't include those points.

Inclusion of non-linear characteristics is critical to represent device physical phenomena better

Source: "Measurement Methodology for Accurate Modeling of SiC MOSFET Switching Behavior over Wide Voltage and Current Ranges", H. Sakairi, et. al., IEEE Trans on Power Electronics early access,

Keysight World

What are different? (4)

To use simulation software that performs not only time domain analysis but also incorporate electro-thermal and layout distribution effects

Electromagnetic simulation using board layout information as well as inclusion of s-parameters measured on DUT, the simulation of circuit operation becomes significantly better.

Circuit simulation based on the model and

electromagnetic analysis
Conventional

New method

Results from EM-circuit Co-simulation

EM-model informs the circuit simulation

 Circuit excitation informs the EM postsimulation visualization display

Keysight World

Insights Given From the Simulated Spectrum

LAYOUT RELATED NOISE IS GREATER AT FM BAND

Underlying EMI mechanisms:

- Harmonically related components
- Non-harmonic related ringing
- Instabilities
- L di/dt mechanisms

Component and layout parasitics:

- Prevent EMI from being suppressed they always need to be modeled
- May create noise in different frequency spectrums

freq, Hz

Enabling technology

Exact waveform match is critical for noise calculation as waveform contains high frequency components

Source: "Measurement Methodology for Accurate Modeling of SiC MOSFET Switching Behavior over Wide Voltage and Current Ranges", H. Sakairi, et. al., IEEE Trans on Power Electronics early access,

Keysight World

Before & After Our Solution

Keysight instruments

Sure selection & accurate data

Keysight Integrated Power Electronics Solution

ADVANCED DESIGN SYSTEM (ADS)

Power Electronics Library

W2240 Power Electronics Bundle **Schematic** 3D viewer Layout Momentum Transient/convolution **FEM** PWMD1 Freq=1 MHz

Data display

Verilog-A

Product Options

W2300 Harmonic Balance Simulator

W2349 Electro-Thermal Simulator

Keysight Solutions for Power Electronics

KEY CHALLENGES OUR CUSTOMERS ARE FACING TODAY

Device Modeling

Device Parameter Measurement

IATF Compliant Cal

B1506A Curve Tracer / Power **Device Analyzer** I-V. C-V

Double Pulse Test PD1500A High power I-V

E5080A ENA + Fixture Zero-bias S-param, On-state C-V

Parameter Extraction

Power Electronics Model Generator Simple and quick fitting

- 2. IC-CAP based Power MOS/SiC/GaN/IGBT Modeling Opt.
 - For professional, high accurate modeling
- 3. Keysight Modeling Service

PE Design Challenges

- Mitigate noise on Switching (← Reliability, EMI Standards) Surge Voltage, di/dt, Conductive noise
- Thermal design (← Reliability) Thermal distribution on PCB (Air flow is partially supported)
- Improve power efficiency (← Efficiency) Switching Losses, Conductive losses

Circuit Development

Simulation Design

Source: IEICE the 29th Workshop on Circuits and Systems

ADS PE Bundle De-fact standard circuit simulator considering

Real Measurement

IATF Compliant Cal

Oscilloscope Waveform analysis and debugging

Parasitic Effect Consideration

Packaged/Passive modeling

ADS Full 3D EM/EMPro EM based simulation

KEYSIGHT

Network Analyzer Verification of devices

Board Pattern Modeling

ADS 3D-Planar EM Sim. Allows the most accurate design

