

5G Opportunities and Development Challenges

MediaTek, Jun 2019

5G Opportunities

Industrial IoT **eMBB Enhancement eMBB** Bandwidth **Enhancement** Coverage Power Consumption Private **Network**

Industrial IoT

- Mini-Slot
- SA Option 2

Private Network

- NR-Unlicensed
- Indoor mmWave

MEDIATEK

The Demand of Data Transmission

eMBB Enhancement – Bandwidth

Except some countries (China, Korea, Japan, etc.), operators always suffer fragmental and insufficient Sub-6 spectrum issues.

eMBB Enhancement – Bandwidth – Solutions

NR Carrier Aggregation

At least 2CC NR CA required for Sub-6 spectrum. Not just for fragmental allocation, but also helps coverage.

Spectrum Sharing

Transmit NR signals over legacy LTE band. Different operators may have different requirements.

Band Refarming

Long-term goal to release UMTS/LTE bands. Regulatory concerns in different regions. **Spectrum Sharing**

NRCA

Band Refarming

Feature – Spectrum Sharing

меритек * PDSCH Type A is applied when LTE MBSFN subframe is configured. Otherwise, PDSCH Type B is applied.

eMBB Enhancement – Coverage

Link Budget Comparison			
	Outdoor (dB)	Indoor (dB)	
1.9 GHz TD-LTE	0	0	
2.6 GHz TD-LTE	-4.04.5	-6.1 – -6.4	
3.5 GHz NR	-6.37.2	-10.0 — -10.5	
4.9 GHz N R	-9.5 – -10.8	-16.3 – -18.3	

eMBB Enhancement – Coverage – Solutions

HPUE

Increase Tx Power

Total Tx 26 dBm for NSA and SA

LOW BAND

UL by Lower Frequency

NR CA with Spectrum Sharing SUL (Supplemental UL) NR-NR DC (Rel. 15 synced only)

DPS & SUO

Coordinate NSA Tx

DPS (Dynamic Power Sharing)
SOU (Single Uplink Only)

UDC

UL Data Compression

Reduce Over-The-Air Data to Reduce Tx Power

Feature – DPS vs. SUO under NSA

Feature – SUL vs. NR CA + Spectrum Sharing

	SUL	NR CA + Spectrum Sharing	
UE configuration	1DL + 2 "configured" UL, wherein only 1UL is active at on- time	 2 DL + 1UL, wherein the UL freq is related to PCC (note: it is based on CA design principle) 	
Operation and UL switching	 NW configures 2 UL after initial access NW commands UL switching by RRC message or DCI 	 NW configures SCell after initial access UE performs PCell/SCell measurements and reports the results to NW NW sends out RRC message (i.e., handover command) to trigger PCell/SCell switching And, PCell UL is changed accordingly 	
Uplink power control @ low band	Pathloss is measured @ high band and additional "compensation delta" is provided by NW	Pathloss is measured @ low band	
Spec readiness	Done, in maintenance mode now	Done, in maintenance mode now	
Benefit	 No impact to LTE DL Scheduling flexibility between SUL and NUL loose gNB/eNB interaction 	 Reuse current LTE CA model No additional effort on power control 	
Performance: UL coverage extension	No difference		
Performance: UL switching latency	1ms by DCI-based control	 <= 20ms by handover operation 	
Performance: UE power consumption	• Lower (1DL)	Higher (2DL)	
Performance: DL T-put	Worse (1DL)	Better (2DL)	
Other issues	• Additional NW deployment efforts (e.g., power control)	Tighter gNB/eNB interaction	

eMBB Enhancement – Power Consumption

USER EXPERIENCE MATTERS!

- The properties of High-Tput & low-latency in NR eMBB would introduce BIG challenge in the 1st Gen 5G's UE.
 - 2x ~ 3x peak power consumption is observed relative to LTE.
 - NSA PDCCH-only power: 3.5x of LTEonly
 - NSA PDCCH-only power: 1.4x of NR SA
- Carefully optimized network configuration are critical to secure 5G UE power consumption that will satisfy users.

eMBB Enhancement – Power Consumption – Solutions

01 **Coordinated CDRX** 02 **Network Optimization Dynamic BWP Switching** 03 04 **Cross-slot Scheduling Overheat Protection**

BOTH <u>UE</u> AND <u>NETWORK</u>'S SUPPORT ARE NEEDED

- Coordinated CDRX to ensure UE can sleep together under EN-DC NSA mode.
- Network Optimization includes:
 - TRS should be tightly coupled with CDRX on-cycle.
 - Avoid in-slot Aperiodic CSI-RS
 - Concentrate monitor occasions in the front of slot
 - Relaxed K1/K2 configuration
- Cross-slot Scheduling is a trade-off between latency and battery life.
- Dynamic BWP switching is relatively simple comparing to above settings.
- Overheat Protection to ensure UE won't have heat crash.

Feature – Cross-Slot Scheduling

Feature – Dynamic BWP Switching

- Flexibly configure UE operation bandwidth for power saving
 - BWP: BandWidth Part
 - For each CC, UE will only process the PRBs within BWP.

BWP Options	Overhead	Switching Latency	Note
RRC-based	One RRC message (~10kB) per switch	~10ms	Semi-static adaption
DCI-based	One RRC message; One PDCCH perswitch	~2ms	Easier to better fit with observed traffic pattern

Power Saving Gain by BWP

Video traffic (example by iQIYI)

- >30% power saving gain by BWP
 - BWP=100MHz when large payload
 - BWP=20MHz when small payload
 - DCI-based BWP applied

Voice traffic (traffic pattern from VoLTE)

- >40% power saving gain by BWP
 - Assume 3 types of voice traffic scenario: Silence/Listen/Talk
 - If no BWP, NR BW = 100MHz. With BWP, NR BW = 20MHz.
 - Power saving from PDCCH and PDSCH processing

Gaming traffic (example by KingOfGlory)

- Up to ~50% power saving gain by BWP
 - BWP bandwidth = 10MHz or 100MHz
 - DCI-based BWP applied

Feature – Overheat Protection

Recommended Ctrl Parameters

- CA#, BWP, MIMO-Layer# → R15 approved
- TX Pwr, Duty-cycles, Modulation-Types... → R16

Opt1:	Opt2:	Opt3:	Opt4:	Opt5:
NR MIMO Reduction 4x4 → 2x2	NR BWP Reduction 100MHz → 20MHz	NR CC reduction LTE+NR → LTE	NR-only DutyCycle Reduction LTE: 100% NR: 100% -> 40%	NR DutyCycle Reduction LTE: 100→40% NR: 100%→40%
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> √60%</u>

Overheat protection request - CA/MIMO-Layer/BWP reduction request UE UE Overheat protection response - Reduced capability to UE

Private Network & IIoT – Spectrum

- 8 LAA deployments/launches:
 - AT&T (US), T-Mobile (US), AIS (Thailand), MTS (Russia), Smartone (Hong Kong), TIM (Italy), Turkcell, Vodafone Turkey (deployed)
- 28 LAA trials and deployments in progress in 18 countries

	Licensed- assisted	Enable unlicensed band operation
3GPP	Standalone operation	Enable New non- smartphone business opportunity (e.g., IIoT)
Rel. 16	DL data reception	Improve DL system capacity by using unlicensed band
	Uplink data transmission (incl. RACH)	Improve UL system capacity by using unlicensed band
	Sub-7 band support	Enable unlicensed band operation about 6Ghz

Besides <u>unlicensed 5GHz</u>, many customers are considering <u>CBRS (GAA)</u> and <u>indoor mmWave</u>.

Private Network & IIoT – Low Latency

MediaTek helio | M70

High-Level Capability

LTE Rel-15 Cat.19

1.6Gbps DL 5CC, 4x4 MIMO 316Mbps UL 3CC DL/UL 256QAM

NR R15 Sep/Dec version

4.67Gbps DL, 200MHz aggregated BW, 4x4 MIMO 2.5Gbps UL, 200MH aggregated BW, 2x2 MIMO DL/UL 256QAM

NR Carrier Aggregation

DCI-based BWP Adaptation Dynamic Power Sharing Spectrum Sharing

